a2 United States Patent

Wawda et al.

US009311481B1

US 9,311,481 B1
Apr. 12,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

SYSTEMS AND METHODS FOR
CLASSIFYING PACKAGE FILES AS
TROJANS

Applicant: Symantec Corporation, Mountain View,

CA (US)

Inventors: Abubakar Wawda, Cupertino, CA (US);
Matthew Yeo, Portland, OR (US); Jun
Mao, Culver City, CA (US)

Assignee: Symantec Corporation, Mountain View,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 39 days.

Appl. No.: 14/486,424

Filed: Sep. 15, 2014

Int. CL.

GO6F 21/56 (2013.01)

HO4L 29/06 (2006.01)

U.S. CL

CPC GO6F 21/562 (2013.01); HO4L 63/145

(2013.01)

Field of Classification Search

CPC e GOG6F 21/562

USPC e 726/23

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2014/0283147 Al* 9/2014 Tehranipoor et al. ... GOSF 21/76

726/34
OTHER PUBLICATIONS

Crussell, Jonathan et al., “Attack of the Clones: Detecting Cloned
Applications on Android Markets”, http://web.cs.ucdavis.edu/
~hchen/paper/esorics2012.pdf, as accessed on Jul. 30, 2014,
ESORICs 2012, LNCS 7459, Springer-Verlag Berlin Heidelberg,
(2012), pp. 37-54.

“Lookout”, https://www.lookout.com/, as accessed Jul. 30, 2014,
(Jan. 2, 1997).

“Kaspersky”, http://usa.kaspersky.com/?domain=kaspersky.com, as
accessed Jul. 30, 2014, (1997).

* cited by examiner

Primary Examiner — Jacob Lipman
(74) Attorney, Agent, or Firm — ALG Intellectual Property,
LLC

(57) ABSTRACT

A computer-implemented method for classifying package
files as Trojans may include (1) detecting a resemblance
between an unclassified package file and a known legitimate
package file, (2) determining that the unclassified package file
is signed by a different signatory than a signatory that signed
the known legitimate package file, (3) determining that a
feature of the unclassified package file is suspicious, the
feature being absent from the known legitimate package file,
and (4) classifying the unclassified package file as a Trojan
version of the known legitimate package file based on the
unclassified package file being signed by the different signa-
tory and having the suspicious feature. Various other meth-
ods, systems, and computer-readable media are also dis-
closed.

20 Claims, 6 Drawing Sheets

System

100

Modules
102

Detection Module
104

Signatory Determination
Module
106

Feature Determination Module

108

Classification Module
110

Database
120

Known Legitimate
Package Files
122

U.S. Patent Apr. 12,2016 Sheet 1 of 6 US 9,311,481 B1

System
100

Modules Database
102 120

Known Legitimate
Package Files
122

Detection Module
104

Signatory Determination
Module
106

Feature Determination Module
108

Classification Module
110

FIG. 1

U.S. Patent Apr. 12,2016 Sheet 2 of 6
200
App Server
206

Unclassified Package File
208

Known Legitimate
Package File
210

Network
204

Computing Device

202

Detection Module
104

Unclassified Package File
208

—

Signatory Determination
Module
106

Database
120

Known Legitimate
Package File
210

: Signhatory :
\ 24

Feature Determination
Module
108

Feature
216

v

Classification Module
110

FIG. 2

US 9,311,481 B1

U.S. Patent Apr. 12,2016 Sheet 3 of 6 US 9,311,481 B1

300

\

D
:

Detect a resemblance between an unclassified package file and a
known legitimate package file
302

I

Determine that the unclassified package file is signed by a different
signatory than a signatory that signed the known legitimate package
file
304

I

Determine that a feature of the unclassified package file is
suspicious, the feature being absent from the known legitimate
package file
306

I

Classify the unclassified package file as a Trojan version of the
known legitimate package file based on the unclassified package file
being signed by the different signatory and having the suspicious
feature
308

:
=

FIG. 3

U.S. Patent

400

\

Apr. 12,2016 Sheet 4 of 6 US 9,311,481 B1

Legitimate Package File Trojan Package File

402 422

Metadata Similar - Metadata

406 o 416

Code Code

408 Similar. > 418
R by
H o
. : Added N Permissions Request
i - 412
L]
|====ss===-===-q
: " R API Call
| : Added 1 414
e 1

Advertiser ID I . Advertiser ID
410 I Different=—t—tp 424
Signature . Signature
404 Different— 420

FIG. 4

US 9,311,481 B1

Sheet 5 of 6

Apr. 12,2016

U.S. Patent

g OId

Alowsy weisAg

[4?
fye] aseqeleq
eoIne(obelo)g
dmyjoeg 7TG
a0lAe(obelo)s
Arewd fora 375
A A 8018 a%1A8(Q
ndu| Aeidsig
A A
A 4
0gs 9z% ZLs
aoeau| aoeau| 1a)depy aInyoniselyu|
obeloig ndu| Aeldsig uonesiunwwo)

A H \

A 4

A A A v
y y
2ol
oo, as e saInpo PIS
uolEDIUNWWOYD 18llenued ol Jajjonued Aoway - 10$8820.d
l

X

0ls

waisAg Bunndwon

US 9,311,481 B1

Sheet 6 of 6

Apr. 12,2016

U.S. Patent

INIOZ9 |
somveg |
.
.
)
s |
N)069 | sommag |
so1A8(Q
. A 4
°
2 9
(1069 4 NEVVETS
801A8Q

089
ouqed NvS

%9

G69 TEYSETLS

Aely sbelo)s |«
Juabisu|

A

{N)093

801A8(Q]

A

(1)099

a21ne(

A

0£9
Jusio

069
SHOMIBN

029
jusld

001
woisAs

019
usio

AN

009
21M23)1Y2Jy HJOMIeN

US 9,311,481 Bl

1
SYSTEMS AND METHODS FOR
CLASSIFYING PACKAGE FILES AS
TROJANS

BACKGROUND

Trojans, including malicious applications that hide inside
or masquerade as legitimate programs, have long been a
problem on desktop computing devices. Increasingly, users
are shifting more and more computing activity from desktops
to mobile devices such as smart phones and tablets. Users
may download mobile applications to play games, organize
their calendar, message other users, track transit schedules, or
perform a wide and ever-growing variety of other functions.
As legitimate mobile applications increase in number, so too
does the danger increase of users accidentally downloading a
Trojan version of a legitimate application.

Many traditional systems for classifying applications as
Trojans involve manual analysis of the applications to deter-
mine whether a particular instance of an application is legiti-
mate. Such manual analysis may be inefficient and time-
intensive. For example, these traditional manual systems may
not be able to keep up with the vast quantity of new mobile
applications being introduced to mobile application stores on
a daily basis. Some traditional systems may be able to detect
similar applications, but may not be able to make value judg-
ments about which of the applications is legitimate. Similarly,
these traditional systems may not be able to map Trojan
applications to their corresponding legitimate applications,
except through manual and time-intensive study. Accord-
ingly, the instant disclosure identifies and addresses aneed for
additional and improved systems and methods for classifying
package files as Trojans.

SUMMARY

As will be described in greater detail below, the instant
disclosure describes various systems and methods for classi-
fying package files as Trojans by, for example, determining
that an unclassified package file is similar to a legitimate
package file but has a suspicious feature that is absent from
the legitimate package file. In one example, a computer-
implemented method for classifying package files as Trojans
may include (1) detecting a resemblance between an unclas-
sified package file and a known legitimate package file, (2)
determining that the unclassified package file is signed by a
different signatory than a signatory that signed the known
legitimate package file, (3) determining that a feature of the
unclassified package file is suspicious, and (4) classifying the
unclassified package file as a Trojan version of the known
legitimate package file based on the unclassified package file
being signed by the different signatory and having the suspi-
cious feature. The feature may also be absent from the known
legitimate package file.

In some embodiments, the computer-implemented method
may further include performing a security action based on
classifying the unclassified package file as the Trojan version
of the known legitimate package file. In some examples, the
security action may include (1) alerting a developer of the
known legitimate package file to the presence of the Trojan
version of the known legitimate package file, (2) informing a
user of the Trojan version of the known legitimate package
file that the user is not using the known legitimate package
file, (3) flagging the unclassified package file as the Trojan
version of the known legitimate package file in an application

10

15

20

25

30

35

40

45

50

55

60

65

2

store, and/or (4) removing the unclassified package file as the
Trojan version of the known legitimate package file from an
application store.

In some examples, detecting the resemblance between the
unclassified package file and the known legitimate package
file may include comparing the unclassified package file to
known legitimate package files in a package file database. In
some examples, detecting the resemblance between the
unclassified package file and the known legitimate package
file may include detecting the resemblance between code of
the unclassified package file and code ofthe known legitimate
package file. Additionally, or alternatively, detecting the
resemblance between the unclassified package file and the
known legitimate package file may include detecting the
resemblance between metadata of the unclassified package
file and metadata of the known legitimate package file. Simi-
larly, detecting the resemblance between the unclassified
package file and the known legitimate package file may
include determining that the unclassified package file exceeds
a predetermined threshold for similarity to the known legiti-
mate package file.

In one embodiment, the unclassified package file may rep-
resent a mobile application. In further examples, determining
that the feature of the unclassified package file is suspicious
may include identifying an extra permission requested by the
unclassified package file that is not requested by the known
legitimate package file. In some examples, determining that
the feature of the unclassified package file is suspicious may
include identifying a negative reputation of the different sig-
natory of the unclassified package file. In other examples,
determining that the feature of the unclassified package file is
suspicious may include identitying a different advertisement
identifier that is not present in the known legitimate package
file. Additionally or alternatively, determining that the feature
of the unclassified package file is suspicious may include
identifying an instance of the unclassified package file in an
application store to which the known legitimate package file
has not been published.

In one embodiment, a system for implementing the above-
described method may include (1) a detection module, stored
in memory, that detects a resemblance between an unclassi-
fied package file and a known legitimate package file, (2) a
signatory determination module, stored in memory, that
determines that the unclassified package file is signed by a
different signatory than a signatory that signed the known
legitimate package file, (3) a feature determination module,
stored in memory, that determines that a feature of the unclas-
sified package file is suspicious, (4) a classification module,
stored in memory, that classifies the unclassified package file
as a Trojan version of the known legitimate package file based
on the unclassified package file being signed by the different
signatory and having the suspicious feature, and (5) at least
one physical processor configured to execute the detection
module, the signatory determination module, the feature
determination module, and the classification module.

In some examples, the above-described method may be
encoded as computer-readable instructions on a non-transi-
tory computer-readable medium. For example, a computer-
readable medium may include one or more computer-execut-
able instructions that, when executed by at least one processor
of'a computing device, may cause the computing device to (1)
detect a resemblance between an unclassified package file
and a known legitimate package file, (2) determine that the
unclassified package file is signed by a different signatory
than a signatory that signed the known legitimate package
file, (3) determine that a feature of the unclassified package
file is suspicious, and (4) classify the unclassified package file

US 9,311,481 Bl

3

as a Trojan version of the known legitimate package file based
on the unclassified package file being signed by the different
signatory and having the suspicious feature.

Features from any of the above-mentioned embodiments
may be used in combination with one another in accordance
with the general principles described herein. These and other
embodiments, features, and advantages will be more fully
understood upon reading the following detailed description in
conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings dem-
onstrate and explain various principles of the instant disclo-
sure.

FIG. 1 is a block diagram of an exemplary system for
classifying package files as Trojans.

FIG. 2 is a block diagram of an additional exemplary sys-
tem for classifying package files as Trojans.

FIG. 3 is a flow diagram of an exemplary method for
classifying package files as Trojans.

FIG. 4 is a block diagram of an exemplary legitimate pack-
age file and an exemplary Trojan package file.

FIG. 5 is a block diagram of an exemplary computing
system capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

FIG. 6 is a block diagram of an exemplary computing
network capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

Throughout the drawings, identical reference characters
and descriptions indicate similar, but not necessarily identi-
cal, elements. While the exemplary embodiments described
herein are susceptible to various modifications and alternative
forms, specific embodiments have been shown by way of
example in the drawings and will be described in detail
herein. However, the exemplary embodiments described
herein are not intended to be limited to the particular forms
disclosed. Rather, the instant disclosure covers all modifica-
tions, equivalents, and alternatives falling within the scope of
the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The present disclosure is generally directed to systems and
methods for classifying package files as Trojans. As will be
explained in greater detail below, by comparing a new, sus-
picious, and/or unclassified package file to other package files
and checking for signature differences and suspicious
changes the systems described herein may detect Trojan
package files automatically and on a large scale.

The following will provide, with reference to FIGS. 1-2,
detailed descriptions of exemplary systems for classifying
package files as Trojans. Detailed descriptions of correspond-
ing computer-implemented methods will also be provided in
connection with FIG. 3. Detailed descriptions of an exem-
plary legitimate package file and an exemplary Trojan pack-
age file will be provided in connection with FIG. 4. In addi-
tion, detailed descriptions of an exemplary computing system
and network architecture capable of implementing one or
more of the embodiments described herein will be provided in
connection with FIGS. 5 and 6, respectively.

FIG. 1 is a block diagram of exemplary system 100 for
classifying package files as Trojans. As illustrated in this
figure, exemplary system 100 may include one or more mod-

10

15

20

25

30

35

40

45

50

55

60

65

4

ules 102 for performing one or more tasks. For example, and
as will be explained in greater detail below, exemplary system
100 may include a detection module 104 that may detect a
resemblance between an unclassified package file and a
known legitimate package file. Exemplary system 100 may
additionally include a signatory determination module 106
that may determine that the unclassified package file is signed
by a different signatory than a signatory that signed the
known legitimate package file. Exemplary system 100 may
also include a feature determination module 108 that may
determine that a feature of the unclassified package file is
suspicious. The feature may be absent from the known legiti-
mate package file. Exemplary system 100 may additionally
include a classification module 110 that may classify the
unclassified package file as a Trojan version of the known
legitimate package file based on the unclassified package file
being signed by the different signatory and having the suspi-
cious feature. Although illustrated as separate elements, one
or more of modules 102 in FIG. 1 may represent portions of a
single module or application.

In certain embodiments, one or more of modules 102 in
FIG. 1 may represent one or more software applications or
programs that, when executed by a computing device, may
cause the computing device to perform one or more tasks. For
example, and as will be described in greater detail below, one
or more of modules 102 may represent software modules
stored and configured to run on one or more computing
devices, such as the devices illustrated in FIG. 2 (e.g., com-
puting device 202 and/or app server 206), computing system
510 in FIG. 5, and/or portions of exemplary network archi-
tecture 600 in FIG. 6. One or more of modules 102 in FIG. 1
may also represent all or portions of one or more special-
purpose computers configured to perform one or more tasks.

As illustrated in FIG. 1, exemplary system 100 may also
include one or more databases, such as database 120. In one
example, database 120 may be configured to store known
legitimate package files 122, which may include the legiti-
mate package files discussed below for FIG. 3.

Database 120 may represent portions of a single database
or computing device or a plurality of databases or computing
devices. For example, database 120 may represent a portion
of'app server 206 in FIG. 2, computing system 510 in FIG. 5,
and/or portions of exemplary network architecture 600 in
FIG. 6. Alternatively, database 120 in FIG. 1 may represent
one or more physically separate devices capable of being
accessed by a computing device, such as app server 206 in
FIG. 2, computing system 510 in FIG. 5, and/or portions of
exemplary network architecture 600 in FIG. 6.

Exemplary system 100 in FIG. 1 may be implemented in a
variety of ways. For example, all or a portion of exemplary
system 100 may represent portions of exemplary system 200
in FIG. 2. As shown in FIG. 2, system 200 may include a
computing device 202 in communication with an app server
206, such as an app store, via a network 204. In one example,
computing device 202 may be programmed with one or more
of modules 102 and/or may store all or a portion of the data in
database 120. Additionally or alternatively, app server 206
may be programmed with one or more of modules 102 and/or
may store all or a portion of the data in database 120.

In one embodiment, one or more of modules 102 from FIG.
1 may, when executed by at least one processor of computing
device 202 and/or app server 206, enable computing device
202 and/or app server 206 to classify package files as Trojans.
For example, and as will be described in greater detail below,
detection module 104 may detect a resemblance between an
unclassified package file 208 and a known legitimate package
file 210. Signatory determination module 106 may determine

US 9,311,481 Bl

5

that unclassified package file 208 is signed by a different
signatory 212 than a signatory 214 that signed known legiti-
mate package file 210. Next, feature determination module
108 may determine that a feature 216 of unclassified package
file 208 is suspicious. Feature 216 may be absent from known
legitimate package file 210. Finally, classification module
110 may classify unclassified package file 208 as a Trojan
version of known legitimate package file 210 based on
unclassified package file 208 being signed by different sig-
natory 212 and having suspicious feature 216.

Computing device 202 generally represents any type or
form of computing device capable of reading computer-ex-
ecutable instructions. Examples of computing device 202
include, without limitation, laptops, tablets, desktops, serv-
ers, cellular phones, Personal Digital Assistants (PDAs), mul-
timedia players, embedded systems, wearable devices (e.g.,
smart watches, smart glasses, etc.), gaming consoles, combi-
nations of one or more of the same, exemplary computing
system 510 in FIG. 5, or any other suitable computing device.

App server 206 generally represents any type or form of
computing device that is capable of hosting package files that
represent applications. Examples of app server 206 include,
without limitation, mobile device application stores, applica-
tion servers, and web hosting servers.

Network 204 generally represents any medium or architec-
ture capable of facilitating communication or data transfer.
Examples of network 204 include, without limitation, an
intranet, a Wide Area Network (WAN), a Local Area Network
(LAN), a Personal Area Network (PAN), the Internet, Power
Line Communications (PLC), a cellular network (e.g., a Glo-
bal System for Mobile Communications (GSM) network),
exemplary network architecture 600 in FIG. 6, or the like.
Network 204 may facilitate communication or data transfer
using wireless or wired connections. In one embodiment,
network 204 may facilitate communication between comput-
ing device 202 and app server 206.

The term “Trojan,” as used herein, generally refers to any
malicious file and/or collection of files that represents itself as
a legitimate file. In some examples, a Trojan may use the
name and/or icon of a legitimate application and/or may
perform some of the same functions as a legitimate applica-
tion in addition to performing malicious functions. For
example, a Trojan may be a copy of a popular mobile game
application that also infects the user’s mobile device with
additional malware.

FIG. 3 is a flow diagram of an exemplary computer-imple-
mented method 300 for classifying package files as Trojans.
The steps shown in FIG. 3 may be performed by any suitable
computer-executable code and/or computing system. In some
embodiments, the steps shown in FIG. 3 may be performed by
one or more of the components of system 100 in FIG. 1,
system 200 in FIG. 2, computing system 510 in FIG. 5, and/or
portions of exemplary network architecture 600 in FIG. 6.

As illustrated in FIG. 3, at step 302, one or more of the
systems described herein may detect a resemblance between
an unclassified package file and a known legitimate package
file. For example, detection module 104 may, as part of com-
puting device 202 in FIG. 2, detect a resemblance between
unclassified package file 208 and known legitimate package
file 210.

The term “package file,” as used herein, generally refers to
any file and/or set of files and/or metadata. In some examples,
a package file may include a collection of files and/or meta-
data organized in a specified format. For example, a package
file may include a manifest file that lists the other files in the
package file. In some examples, a package file may include an

10

20

25

30

40

45

50

55

6

ANDROID application package file (APK) used to install
applications into mobile devices.

The term “unclassified package file,” as used herein, gen-
erally refers to any package file that has not been explicitly
verified as legitimate. In some examples, an unclassified
package file may be a new file recently uploaded to an app
server. In other examples, an unclassified package file may be
tagged by a user and/or automated system as being suspi-
cious. Additionally or alternatively, an unclassified package
file may be any package file that is not currently present in a
database of package files that a security system has already
classified as either legitimate or malicious. In one embodi-
ment, an unclassified package file may represent a mobile
application. For example, an unclassified package file may be
an APK file used for installing applications onto ANDROID
mobile devices.

Detection module 104 may detect the resemblance
between the package files in a variety of ways and/or contexts.
For example, detection module 104 may be part of a comput-
ing system configured to analyze package files in order to
detect Trojans and/or other malware in package files originat-
ing from a variety of other systems. In other examples, detec-
tion module 104 may be part of a security system in an app
server designed to detect Trojans within the app server. Addi-
tionally or alternatively, detection module 104 may be present
on a mobile device and may send a hash and/or signature of a
recently installed application to a remote database of appli-
cation signatures for comparison.

In some examples, detection module 104 may detect the
resemblance between the unclassified package file and the
known legitimate package file by comparing the unclassified
package file to multiple known legitimate package files in a
package file database. For example, detection module 104
may, as part of computing device 202 in FIG. 2, compare
unclassified package file 208 to any or all of the package files
stored within database 120. In one example, detection module
104 may compare unclassified APKs to other APKs stored in
a security database before storing the now-classified APKs in
the database as well.

In some embodiments, detection module 104 may priori-
tize popular package files for comparison with unclassified
package files. The creators of Trojan applications typically
create their Trojan applications with the goal of causing as
many users as possible to download the Trojan, and thus
popular applications are at a higher risk of being copied.
Therefore, any given Trojan file encountered is likely to be a
copy of a popular application. In some examples, detection
module 104 may determine the popularity of APKs in a down-
load store by download counts, installation rates on client
devices, reviews, ratings, and/or any or all of a variety of other
metrics (e.g., basing priority on degree of popularity or using
athreshold value for any of these metrics). In these examples,
detection module 104 may compare unclassified APKs with
potentially similar popular APKs before and/or in lieu of
comparing the unclassified APKs to APKs not categorized as
popular.

In some examples, detection module 104 may detect the
resemblance between the unclassified package file and the
known legitimate package file by detecting the resemblance
between code of the unclassified package file and code of the
known legitimate package file. Additionally or alternatively,
detection module 104 may detect the resemblance between
the unclassified package file and the known legitimate pack-
age file by detecting the resemblance between metadata of the
unclassified package file and metadata of the known legiti-
mate package file. In some examples, detection module 104
may detect the resemblance between the unclassified package

US 9,311,481 Bl

7

file and the known legitimate package file by determining that
the unclassified package file exceeds a predetermined thresh-
old for similarity to the known legitimate package file. For
example, detection module 104 may determine that the
unclassified package file is similar to the known legitimate
package file if the code and/or metadata of the two package
files is 90% similar according to a matching algorithm.

At step 304, one or more of the systems described herein
may determine that the unclassified package file is signed by
a different signatory than a signatory that signed the known
legitimate package file. For example, signatory determination
module 106 may, as part of computing device 202 in FIG. 2,
determine that unclassified package file 208 is signed by
different signatory 212 than signatory 214 that signed known
legitimate package file 210.

The term “signatory,” as used herein, generally refers to
any developer, group of developers, enterprise, and/or other
entity that has marked a package file as authentic and/or
authored or endorsed by the signatory. In some examples, a
signatory may be the holder of a private key used to create a
digital signature with which to sign a package file. For
example, the developer of an APK file may digitally sign the
APK file before uploading it to an app server. In this example,
a malicious developer may digitally sign a Trojan version of
the APK file with a new digital signature because the mali-
cious developer does not have access to the original develop-
er’s digital signature.

Signatory determination module 106 may determine that
the unclassified package file is signed by a different signatory
than the known legitimate package file in a variety of ways
and/or contexts. For example, signatory determination mod-
ule 106 may compare the digital signature of an unclassified
file to the digital signature of a similar known legitimate
package file and determine that the signatures were created by
different signatories. In some examples, signatory determi-
nation module 106 may be part of a computing system con-
figured to detect Trojan versions of applications. In other
examples, signatory determination module 106 may be part
of'a security system for an app server that may be configured
to detect potential Trojan applications published to the app
server.

At step 306, one or more of the systems described herein
may determine that a feature of the unclassified package file
is suspicious. The feature may be absent from the known
legitimate package file. For example, feature determination
module 108 may, as part of computing device 202 in FIG. 2,
determine that feature 216 of unclassified package file 208 is
suspicious. In further examples, feature determination mod-
ule 108 may determine that feature 216 is absent and classi-
fication module 110 may base the classification of unclassi-
fied package file 208 in part on that determination.

The term “feature,” as used herein, generally refers to any
aspect, classification, and/or description of a package file.
Examples of a feature may include, without limitation, code,
metadata, a function call, an application programming inter-
face (API) call, alink to third-party content, an identifier (ID),
a location to which a package file is published, a reputation, a
publisher, a reputation of a publisher, a rating, a review, a size,
and/or a behavior of a package file.

Feature determination module 108 may determine that a
feature of an unclassified package file is suspicious in a vari-
ety of ways and/or contexts. For example, feature determina-
tion module 108 may use a heuristic to determine if a package
file fits the criteria for a malicious file. In another example,
feature determination module 108 may compare features of a
package file against a list of known suspicious features.

10

15

20

25

30

35

40

45

50

55

60

65

8

A Trojan version of a legitimate package file may differ
from the original in a number of ways, as illustrated in FI1G. 4.
A legitimate package file 402 may include metadata 406,
code 408, and/or a signature 404. An advertiser ID 410 may
be hard coded into code 408 and/or may be present elsewhere
in the package file. In this example, a Trojan package file 422
may be a Trojan version of legitimate package file 402. Trojan
package file 422 may include metadata 416 and/or code 418
that may be similar to metadata 406 and/or code 408, respec-
tively. Feature determination module 108 may detect a variety
of suspicious features in Trojan package file 422.

In some examples, feature determination module 108 may
determine that the feature of the unclassified package file is
suspicious by identifying an extra permission requested by
the unclassified package file that is not requested by the
known legitimate package file. For example, as illustrated in
FIG. 4, Trojan package file 422 may include a permissions
request 412 that is not present in legitimate package file 402.
Examples of permissions request 412 may include, without
limitation, requests to access a mobile device’s list of con-
tacts, requests for administrative privileges, requests to send
outbound messages, and/or requests to access any other sen-
sitive data.

In some examples, feature determination module 108 may
determine that the feature of the unclassified package file is
suspicious by identifying a different advertisement identifier
that is not present in the known legitimate package file. For
example, Trojan package file 422 may include an advertiser
1D 424 that is different from advertiser ID 410 in legitimate
package file 402. In some examples, advertiser ID 424 may
belong to an advertisement provider that hosts malicious con-
tent that may infect and/or track a user that views advertise-
ments. In other examples, advertiser ID 424 may belong to an
advertisement provider that is not inherently malicious but
that affiliates with the creators of the Trojan package file.

Additionally or alternatively, feature determination mod-
ule 108 may determine that the feature of the unclassified
package file is suspicious by detecting malicious code in the
unclassified package file. Malicious code may include any
code that takes actions contrary to a user’s wishes such as
sending messages, accessing sensitive information, deleting
files, downloading malicious files, and/or displaying extra
advertisements. In some examples, as illustrated in FIG. 4,
Trojan package file 422 may include an API call 414 that may
be a malicious API call.

In some examples, feature determination module 108 may
determine that the feature of the unclassified package file is
suspicious by identifying a negative reputation of the differ-
ent signatory of the unclassified package file. For example,
Trojan package file 422 may include a different signature 420
than signature 404 of legitimate package file 402. In some
examples, signature 420 may have been created by the mali-
cious developer of Trojan package file 422 that may have also
signed other malicious files. In these examples, the malicious
developer may have a negative reputation as a signatory.

In some examples, feature determination module 108 may
determine that the feature of the unclassified package file is
suspicious by identifying an instance of the unclassified pack-
age file in an application store to which the known legitimate
package file has not been published. For example, the known
legitimate package file may be available in GOOGLE PLAY
and/or the AMAZON APPSTORE but may not have been
published to APPSLIB. In this example, the unclassified
package file may be available in APPSLIB, which may con-
stitute a suspicious feature of the unclassified package file.

In some examples, feature determination module 108 may
analyze features of an unclassified package file in response to

US 9,311,481 Bl

9

signatory determination module 106 determining that the
unclassified package file is signed by a different signatory
than the signatory of a similar package file. In other examples,
signatory determination module 106 may compare signato-
ries in response to feature determination module 108 detect-
ing a suspicious feature of a package file. In further examples,
all or part of these determinations may be performed in par-
allel.

Returning to FIG. 3, at step 308, one or more of the systems
described herein may classify the unclassified package file as
a Trojan version of the known legitimate package file based
on the unclassified package file being signed by the different
signatory and having the suspicious feature. For example,
classification module 110 may, as part of computing device
202 in FIG. 2, classify unclassified package file 208 as a
Trojan version of known legitimate package file 210 based on
unclassified package file 208 being signed by different sig-
natory 212 and having suspicious feature 216.

Classification module 110 may classify the unclassified
package file as a Trojan in a variety of ways and/or contexts.
For example, classification module 110 may be part of a
computing system configured to detect Trojans on any num-
ber of other systems. In another example, classification mod-
ule 110 may be part of the security system for an app server.

In one example, classification module 110 may classify a
package file as a Trojan based on the package file exceeding
a predetermined threshold for suspiciousness. For example,
classification module 110 may only classify a package file as
suspicious if the package file has a different signature than a
similar package file and has at least two suspicious features.
In another example, a variety of suspicious features may have
weights indicating the likelihood that the feature is malicious.
For example, the feature of being published in an app server
that a similar legitimate application is not published in may
have a low weight, while the feature of making an API call
that would display additional advertisements on a mobile
device may have a high weight.

In some embodiments, the systems described herein may
perform a security action based on classifying the unclassi-
fied package file as the Trojan version of the known legitimate
package file. In some examples, the security action may
include (1) alerting a developer of the known legitimate pack-
age file to the presence of the Trojan version of the known
legitimate package file, (2) informing a user of the Trojan
version of the known legitimate package file that the user is
not using the known legitimate package file, (3) flagging the
unclassified package file as the Trojan version of the known
legitimate package file in an application store, and/or (4)
removing the unclassified package file from an application
store.

As explained in connection with method 300 above, the
systems and methods described herein may compare APKs to
known legitimate APKs in a database in order to detect Tro-
jans. In some examples, popular APKs may be given priority
for comparison to unclassified APKs. If an unclassified APK
is found to be signed by a different signatory than a popular
APK that it resembles, the systems described herein may
analyze the unclassified APK for suspicious features. The
systems described herein may classify any APK that
resembles a popular APK but has a different signatory and at
least one suspicious feature as a Trojan version of the popular
APK. By determining that the unclassified APK is not just
malicious but is also a Trojan version of a specific legitimate
APK, the systems described herein can take more directed
security actions such as alerting the developers of the legiti-
mate APK and/or informing users of the Trojan APK that a
legitimate version exists. By automatically making such

10

15

20

25

30

35

40

45

50

55

60

65

10

determinations the systems described herein may efficiently
identify a large number of Trojans.

FIG. 5 is a block diagram of an exemplary computing
system 510 capable of implementing one or more of the
embodiments described and/or illustrated herein. For
example, all or a portion of computing system 510 may per-
form and/or be a means for performing, either alone or in
combination with other elements, one or more of the steps
described herein (such as one or more of the steps illustrated
in FIG. 3). All or a portion of computing system 510 may also
perform and/or be a means for performing any other steps,
methods, or processes described and/or illustrated herein.

Computing system 510 broadly represents any single or
multi-processor computing device or system capable of
executing computer-readable instructions. Examples of com-
puting system 510 include, without limitation, workstations,
laptops, client-side terminals, servers, distributed computing
systems, handheld devices, or any other computing system or
device. In its most basic configuration, computing system 510
may include at least one processor 514 and a system memory
516.

Processor 514 generally represents any type or form of
physical processing unit (e.g., a hardware-implemented cen-
tral processing unit) capable of processing data or interpret-
ing and executing instructions. In certain embodiments, pro-
cessor 514 may receive instructions from a software
application or module. These instructions may cause proces-
sor 514 to perform the functions of one or more of the exem-
plary embodiments described and/or illustrated herein.

System memory 516 generally represents any type or form
of volatile or non-volatile storage device or medium capable
of storing data and/or other computer-readable instructions.
Examples of system memory 516 include, without limitation,
Random Access Memory (RAM), Read Only Memory
(ROM), flash memory, or any other suitable memory device.
Although not required, in certain embodiments computing
system 510 may include both a volatile memory unit (such as,
for example, system memory 516) and a non-volatile storage
device (such as, for example, primary storage device 532, as
described in detail below). In one example, one or more of
modules 102 from FIG. 1 may be loaded into system memory
516.

In certain embodiments, exemplary computing system 510
may also include one or more components or elements in
addition to processor 514 and system memory 516. For
example, as illustrated in FIG. 5, computing system 510 may
include a memory controller 518, an Input/Output (I/O) con-
troller 520, and a communication interface 522, each of which
may be interconnected via a communication infrastructure
512. Communication infrastructure 512 generally represents
any type or form of infrastructure capable of facilitating com-
munication between one or more components of a computing
device. Examples of communication infrastructure 512
include, without limitation, a communication bus (such as an
Industry Standard Architecture (ISA), Peripheral Component
Interconnect (PCI), PCI Express (PCle), or similar bus) and a
network.

Memory controller 518 generally represents any type or
form of device capable of handling memory or data or con-
trolling communication between one or more components of
computing system 510. For example, in certain embodiments
memory controller 518 may control communication between
processor 514, system memory 516, and I/O controller 520
via communication infrastructure 512.

1/0O controller 520 generally represents any type or form of
module capable of coordinating and/or controlling the input
and output functions of a computing device. For example, in

US 9,311,481 Bl

11

certain embodiments I/O controller 520 may control or facili-
tate transfer of data between one or more elements of com-
puting system 510, such as processor 514, system memory
516, communication interface 522, display adapter 526, input
interface 530, and storage interface 534.

Communication interface 522 broadly represents any type
or form of communication device or adapter capable of facili-
tating communication between exemplary computing system
510 and one or more additional devices. For example, in
certain embodiments communication interface 522 may
facilitate communication between computing system 510 and
a private or public network including additional computing
systems. Examples of communication interface 522 include,
without limitation, a wired network interface (such as a net-
work interface card), a wireless network interface (such as a
wireless network interface card), a modem, and any other
suitable interface. In at least one embodiment, communica-
tion interface 522 may provide a direct connection to aremote
server via a direct link to a network, such as the Internet.
Communication interface 522 may also indirectly provide
such a connection through, for example, a local area network
(such as an Ethernet network), a personal area network, a
telephone or cable network, a cellular telephone connection,
a satellite data connection, or any other suitable connection.

In certain embodiments, communication interface 522
may also represent a host adapter configured to facilitate
communication between computing system 510 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
face (SCSI) host adapters, Universal Serial Bus (USB) host
adapters, Institute of Electrical and Electronics Engineers
(IEEE) 1394 host adapters, Advanced Technology Attach-
ment (ATA), Parallel ATA (PATA), Serial ATA (SATA), and
External SATA (eSATA) host adapters, Fibre Channel inter-
face adapters, Ethernet adapters, or the like. Communication
interface 522 may also allow computing system 510 to
engage in distributed or remote computing. For example,
communication interface 522 may receive instructions from a
remote device or send instructions to a remote device for
execution.

As illustrated in FIG. 5, computing system 510 may also
include at least one display device 524 coupled to communi-
cation infrastructure 512 via a display adapter 526. Display
device 524 generally represents any type or form of device
capable of visually displaying information forwarded by dis-
play adapter 526. Similarly, display adapter 526 generally
represents any type or form of device configured to forward
graphics, text, and other data from communication infrastruc-
ture 512 (or from a frame buffer, as known in the art) for
display on display device 524.

As illustrated in FIG. 5, exemplary computing system 510
may also include at least one input device 528 coupled to
communication infrastructure 512 via an input interface 530.
Input device 528 generally represents any type or form of
input device capable of providing input, either computer or
human generated, to exemplary computing system 510.
Examples of input device 528 include, without limitation, a
keyboard, a pointing device, a speech recognition device, or
any other input device.

As illustrated in FIG. 5, exemplary computing system 510
may also include a primary storage device 532 and a backup
storage device 533 coupled to communication infrastructure
512 via a storage interface 534. Storage devices 532 and 533
generally represent any type or form of storage device or
medium capable of storing data and/or other computer-read-
able instructions. For example, storage devices 532 and 533

10

15

20

25

30

35

40

45

50

55

60

65

12

may be a magnetic disk drive (e.g., a so-called hard drive), a
solid state drive, a floppy disk drive, a magnetic tape drive, an
optical disk drive, a flash drive, or the like. Storage interface
534 generally represents any type or form of interface or
device for transferring data between storage devices 532 and
533 and other components of computing system 510. In one
example, database 120 from FIG. 1 may be stored in primary
storage device 532.

In certain embodiments, storage devices 532 and 533 may
be configured to read from and/or write to a removable stor-
age unit configured to store computer software, data, or other
computer-readable information. Examples of suitable remov-
able storage units include, without limitation, a floppy disk, a
magnetic tape, an optical disk, a flash memory device, or the
like. Storage devices 532 and 533 may also include other
similar structures or devices for allowing computer software,
data, or other computer-readable instructions to be loaded
into computing system 510. For example, storage devices 532
and 533 may be configured to read and write software, data, or
other computer-readable information. Storage devices 532
and 533 may also be a part of computing system 510 or may
be a separate device accessed through other interface sys-
tems.

Many other devices or subsystems may be connected to
computing system 510. Conversely, all of the components
and devices illustrated in FIG. 5 need not be present to prac-
tice the embodiments described and/or illustrated herein. The
devices and subsystems referenced above may also be inter-
connected in different ways from that shown in FIG. 5. Com-
puting system 510 may also employ any number of software,
firmware, and/or hardware configurations. For example, one
or more of the exemplary embodiments disclosed herein may
be encoded as a computer program (also referred to as com-
puter software, software applications, computer-readable
instructions, or computer control logic) on a computer-read-
able medium. The term “computer-readable medium,” as
used herein, generally refers to any form of device, carrier, or
medium capable of storing or carrying computer-readable
instructions. Examples of computer-readable media include,
without limitation, transmission-type media, such as carrier
waves, and non-transitory-type media, such as magnetic-stor-
age media (e.g., hard disk drives, tape drives, and floppy
disks), optical-storage media (e.g., Compact Disks (CDs),
Digital Video Disks (DVDs), and BLU-RAY disks), elec-
tronic-storage media (e.g., solid-state drives and flash media),
and other distribution systems.

The computer-readable medium containing the computer
program may be loaded into computing system 510. All or a
portion of the computer program stored on the computer-
readable medium may then be stored in system memory 516
and/or various portions of storage devices 532 and 533. When
executed by processor 514, a computer program loaded into
computing system 510 may cause processor 514 to perform
and/or be a means for performing the functions of one or more
of the exemplary embodiments described and/or illustrated
herein. Additionally or alternatively, one or more of the exem-
plary embodiments described and/or illustrated herein may
be implemented in firmware and/or hardware. For example,
computing system 510 may be configured as an Application
Specific Integrated Circuit (ASIC) adapted to implement one
or more of the exemplary embodiments disclosed herein.

FIG. 6 is a block diagram of an exemplary network archi-
tecture 600 in which client systems 610, 620, and 630 and
servers 640 and 645 may be coupled to a network 650. As
detailed above, all or a portion of network architecture 600
may perform and/or be a means for performing, either alone
or in combination with other elements, one or more of the

US 9,311,481 Bl

13

steps disclosed herein (such as one or more of the steps
illustrated in FIG. 3). All or a portion of network architecture
600 may also be used to perform and/or be a means for
performing other steps and features set forth in the instant
disclosure.

Client systems 610, 620, and 630 generally represent any
type or form of computing device or system, such as exem-
plary computing system 510 in FIG. 5. Similarly, servers 640
and 645 generally represent computing devices or systems,
such as application servers or database servers, configured to
provide various database services and/or run certain software
applications. Network 650 generally represents any telecom-
munication or computer network including, for example, an
intranet, a WAN, a LAN, a PAN, or the Internet. In one
example, client systems 610, 620, and/or 630 and/or servers
640 and/or 645 may include all or a portion of system 100
from FIG. 1.

As illustrated in FIG. 6, one or more storage devices 660
(1)-(N) may be directly attached to server 640. Similarly, one
or more storage devices 670(1)-(N) may be directly attached
to server 645. Storage devices 660(1)-(N) and storage devices
670(1)-(N) generally represent any type or form of storage
device or medium capable of storing data and/or other com-
puter-readable instructions. In certain embodiments, storage
devices 660(1)-(N) and storage devices 670(1)-(N) may rep-
resent Network-Attached Storage (NAS) devices configured
to communicate with servers 640 and 645 using various pro-
tocols, such as Network File System (NFS), Server Message
Block (SMB), or Common Internet File System (CIFS).

Servers 640 and 645 may also be connected to a Storage
Area Network (SAN) fabric 680. SAN fabric 680 generally
represents any type or form of computer network or architec-
ture capable of facilitating communication between a plural-
ity of storage devices. SAN fabric 680 may facilitate commu-
nication between servers 640 and 645 and a plurality of
storage devices 690(1)-(N) and/or an intelligent storage array
695. SAN fabric 680 may also facilitate, via network 650 and
servers 640 and 645, communication between client systems
610, 620, and 630 and storage devices 690(1)-(N) and/or
intelligent storage array 695 in such a manner that devices
690(1)-(N) and array 695 appear as locally attached devices
to client systems 610, 620, and 630. As with storage devices
660(1)-(N) and storage devices 670(1)-(N), storage devices
690(1)-(N) and intelligent storage array 695 generally repre-
sent any type or form of storage device or medium capable of
storing data and/or other computer-readable instructions.

In certain embodiments, and with reference to exemplary
computing system 510 of FIG. 5, a communication interface,
such as communication interface 522 in FIG. 5, may be used
to provide connectivity between each client system 610, 620,
and 630 and network 650. Client systems 610, 620, and 630
may be able to access information on server 640 or 645 using,
for example, a web browser or other client software. Such
software may allow client systems 610, 620, and 630 to
access data hosted by server 640, server 645, storage devices
660(1)-(N), storage devices 670(1)-(N), storage devices 690
(1)-(N), or intelligent storage array 695. Although FIG. 6
depicts the use of a network (such as the Internet) for
exchanging data, the embodiments described and/or illus-
trated herein are not limited to the Internet or any particular
network-based environment.

In at least one embodiment, all or a portion of one or more
of the exemplary embodiments disclosed herein may be
encoded as a computer program and loaded onto and executed
by server 640, server 645, storage devices 660(1)-(N), storage
devices 670(1)-(N), storage devices 690(1)-(N), intelligent
storage array 695, or any combination thereof. All or a portion

10

15

20

25

30

35

40

45

50

55

60

65

14

of one or more of the exemplary embodiments disclosed
herein may also be encoded as a computer program, stored in
server 640, run by server 645, and distributed to client sys-
tems 610, 620, and 630 over network 650.

As detailed above, computing system 510 and/or one or
more components of network architecture 600 may perform
and/or be a means for performing, either alone or in combi-
nation with other elements, one or more steps of an exemplary
method for classifying package files as Trojans.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collectively,
using a wide range of hardware, software, or firmware (or any
combination thereof) configurations. In addition, any disclo-
sure of components contained within other components
should be considered exemplary in nature since many other
architectures can be implemented to achieve the same func-
tionality.

Insome examples, all or a portion of exemplary system 100
in FIG. 1 may represent portions of a cloud-computing or
network-based environment. Cloud-computing environ-
ments may provide various services and applications via the
Internet. These cloud-based services (e.g., software as a ser-
vice, platform as a service, infrastructure as a service, etc.)
may be accessible through a web browser or other remote
interface. Various functions described herein may be pro-
vided through a remote desktop environment or any other
cloud-based computing environment.

In various embodiments, all or a portion of exemplary
system 100 in FIG. 1 may facilitate multi-tenancy within a
cloud-based computing environment. In other words, the
software modules described herein may configure a comput-
ing system (e.g., a server) to facilitate multi-tenancy for one
or more of the functions described herein. For example, one
or more of the software modules described herein may pro-
gram a server to enable two or more clients (e.g., customers)
to share an application that is running on the server. A server
programmed in this manner may share an application, oper-
ating system, processing system, and/or storage system
among multiple customers (i.e., tenants). One or more of the
modules described herein may also partition data and/or con-
figuration information of a multi-tenant application for each
customer such that one customer cannot access data and/or
configuration information of another customer.

According to various embodiments, all or a portion of
exemplary system 100 in FIG. 1 may be implemented within
a virtual environment. For example, the modules and/or data
described herein may reside and/or execute within a virtual
machine. As used herein, the term “virtual machine” gener-
ally refers to any operating system environment that is
abstracted from computing hardware by a virtual machine
manager (e.g., a hypervisor). Additionally or alternatively,
the modules and/or data described herein may reside and/or
execute within a virtualization layer. As used herein, the term
“virtualization layer” generally refers to any data layer and/or
application layer that overlays and/or is abstracted from an
operating system environment. A virtualization layer may be
managed by a software virtualization solution (e.g., a file
system filter) that presents the virtualization layer as though it
were part of an underlying base operating system. For
example, a software virtualization solution may redirect calls
that are initially directed to locations within a base file system
and/or registry to locations within a virtualization layer.

Insome examples, all or a portion of exemplary system 100
in FIG. 1 may represent portions of a mobile computing

US 9,311,481 Bl

15

environment. Mobile computing environments may be
implemented by a wide range of mobile computing devices,
including mobile phones, tablet computers, e-book readers,
personal digital assistants, wearable computing devices (e.g.,
computing devices with a head-mounted display, smart-
watches, etc.), and the like. In some examples, mobile com-
puting environments may have one or more distinct features,
including, for example, reliance on battery power, presenting
only one foreground application at any given time, remote
management features, touchscreen features, location and
movement data (e.g., provided by Global Positioning Sys-
tems, gyroscopes, accelerometers, etc.), restricted platforms
that restrict modifications to system-level configurations and/
or that limit the ability of third-party software to inspect the
behavior of other applications, controls to restrict the instal-
lation of applications (e.g., to only originate from approved
application stores), etc. Various functions described herein
may be provided for a mobile computing environment and/or
may interact with a mobile computing environment.

In addition, all or a portion of exemplary system 100 in
FIG. 1 may represent portions of, interact with, consume data
produced by, and/or produce data consumed by one or more
systems for information management. As used herein, the
term “information management” may refer to the protection,
organization, and/or storage of data. Examples of systems for
information management may include, without limitation,
storage systems, backup systems, archival systems, replica-
tion systems, high availability systems, data search systems,
virtualization systems, and the like.

In some embodiments, all or a portion of exemplary system
100 in FIG. 1 may represent portions of, produce data pro-
tected by, and/or communicate with one or more systems for
information security. As used herein, the term “information
security” may refer to the control of access to protected data.
Examples of systems for information security may include,
without limitation, systems providing managed security ser-
vices, data loss prevention systems, identity authentication
systems, access control systems, encryption systems, policy
compliance systems, intrusion detection and prevention sys-
tems, electronic discovery systems, and the like.

According to some examples, all or a portion of exemplary
system 100 in FIG. 1 may represent portions of, communicate
with, and/or receive protection from one or more systems for
endpoint security. As used herein, the term “endpoint secu-
rity” may refer to the protection of endpoint systems from
unauthorized and/or illegitimate use, access, and/or control.
Examples of systems for endpoint protection may include,
without limitation, anti-malware systems, user authentication
systems, encryption systems, privacy systems, spam-filtering
services, and the like.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only
and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or discussed
in a particular order, these steps do not necessarily need to be
performed in the order illustrated or discussed. The various
exemplary methods described and/or illustrated herein may
also omit one or more of the steps described or illustrated
herein or include additional steps in addition to those dis-
closed.

While various embodiments have been described and/or
illustrated herein in the context of fully functional computing
systems, one or more of these exemplary embodiments may
be distributed as a program product in a variety of forms,
regardless of the particular type of computer-readable media
used to actually carry out the distribution. The embodiments
disclosed herein may also be implemented using software

10

15

20

25

30

35

40

45

50

55

60

65

16

modules that perform certain tasks. These software modules
may include script, batch, or other executable files that may
be stored on a computer-readable storage medium or in a
computing system. In some embodiments, these software
modules may configure a computing system to perform one
or more of the exemplary embodiments disclosed herein.

In addition, one or more of the modules described herein
may transform data, physical devices, and/or representations
of physical devices from one form to another. For example,
one or more of the modules recited herein may receive pack-
age file data to be transformed, transform the package file
data, output a result of the transformation to a database, use
the result of the transformation to determine whether a pack-
age file is similar to another package file and/or malicious,
and store the result of the transformation to a database. Addi-
tionally or alternatively, one or more of the modules recited
herein may transform a processor, volatile memory, non-
volatile memory, and/or any other portion of a physical com-
puting device from one form to another by executing on the
computing device, storing data on the computing device,
and/or otherwise interacting with the computing device.

The preceding description has been provided to enable
others skilled in the art to best utilize various aspects of the
exemplary embodiments disclosed herein. This exemplary
description is not intended to be exhaustive or to be limited to
any precise form disclosed. Many modifications and varia-
tions are possible without departing from the spirit and scope
of the instant disclosure. The embodiments disclosed herein
should be considered in all respects illustrative and not
restrictive. Reference should be made to the appended claims
and their equivalents in determining the scope of the instant
disclosure.

Unless otherwise noted, the terms “connected to” and
“coupled to” (and their derivatives), as used in the specifica-
tion and claims, are to be construed as permitting both direct
and indirect (i.e., via other elements or components) connec-
tion. In addition, the terms “a” or “an,” as used in the speci-
fication and claims, are to be construed as meaning “at least
one of.” Finally, for ease of use, the terms “including” and
“having” (and their derivatives), as used in the specification
and claims, are interchangeable with and have the same
meaning as the word “comprising.”

What is claimed is:

1. A computer-implemented method for classitying pack-
age files as Trojans, at least a portion of the method being
performed by a computing device comprising at least one
processor, the method comprising:

detecting a resemblance between an unclassified package

file and a known legitimate package file;

determining that the unclassified package file is signed by

a different signatory than a signatory that signed the
known legitimate package file;

determining that a feature of the unclassified package file is

suspicious, the feature being absent from the known
legitimate package file;

classifying the unclassified package file as a Trojan version

of the known legitimate package file based on the
unclassified package file being signed by the different
signatory and having the suspicious feature.

2. The computer-implemented method of claim 1, wherein
detecting the resemblance between the unclassified package
file and the known legitimate package file comprises compar-
ing the unclassified package file to a plurality of known legiti-
mate package files in a package file database.

3. The computer-implemented method of claim 1, wherein
detecting the resemblance between the unclassified package
file and the known legitimate package file comprises deter-

US 9,311,481 Bl

17

mining that the unclassified package file exceeds a predeter-
mined threshold for similarity to the known legitimate pack-
age file.

4. The computer-implemented method of claim 1, wherein
the unclassified package file represents a mobile application.

5. The computer-implemented method of claim 1, wherein
determining that the feature of the unclassified package file is
suspicious comprises identifying an extra permission
requested by the unclassified package file that is not requested
by the known legitimate package file.

6. The computer-implemented method of claim 1, wherein
determining that the feature of the unclassified package file is
suspicious comprises identifying a negative reputation of the
different signatory of the unclassified package file.

7. The computer-implemented method of claim 1, wherein
determining that the feature of the unclassified package file is
suspicious comprises identifying a different advertisement
identifier that is not present in the known legitimate package
file.

8. The computer-implemented method of claim 1, wherein
determining that the feature of the unclassified package file is
suspicious comprises identifying an instance of the unclassi-
fied package file in an application store to which the known
legitimate package file has not been published.

9. The computer-implemented method of claim 1, wherein
detecting the resemblance between the unclassified package
file and the known legitimate package file comprises at least
one of:

detecting the resemblance between code of the unclassified
package file and code of the known legitimate package
file;

detecting the resemblance between metadata of the unclas-
sified package file and metadata of the known legitimate
package file.

10. The computer-implemented method of claim 1, further
comprising performing a security action based on classifying
the unclassified package file as the Trojan version of the
known legitimate package file.

11. The computer-implemented method of claim 10,
wherein the security action comprises at least one of:

alerting a developer of the known legitimate package file to
the presence of the Trojan version of the known legiti-
mate package file;

informing a user of the Trojan version of the known legiti-
mate package file that the user is not using the known
legitimate package file;

flagging the unclassified package file as the Trojan version
of the known legitimate package file in an application
store;

removing the unclassified package file from an application
store.

12. A system for classifying package files as Trojans, the

system comprising:

adetection module, stored in memory, that detects a resem-
blance between anunclassified package file and a known
legitimate package file;

a signatory determination module, stored in memory, that
determines that the unclassified package file is signed by
a different signatory than a signatory that signed the
known legitimate package file;

a feature determination module, stored in memory, that
determines that a feature of the unclassified package file
is suspicious, the feature being absent from the known
legitimate package file;

15

20

25

30

35

45

50

55

60

18

a classification module, stored in memory, that classifies
the unclassified package file as a Trojan version of the
known legitimate package file based on the unclassified
package file being signed by the different signatory and
having the suspicious feature;

at least one physical processor configured to execute the
detection module, the signatory determination module,
the feature determination module, and the classification
module.

13. The system of claim 12, wherein the detection module
detects the resemblance between the unclassified package file
and the known legitimate package file by comparing the
unclassified package file to a plurality of known legitimate
package files in a package file database.

14. The system of claim 12, wherein the detection module
detects the resemblance between the unclassified package file
and the known legitimate package file by determining that the
unclassified package file exceeds a predetermined threshold
for similarity to the known legitimate package file.

15. The system of claim 12, wherein the unclassified pack-
age file represents a mobile application.

16. The system of claim 12, wherein the feature determi-
nation module determines that the feature of the unclassified
package file is suspicious by identifying an extra permission
requested by the unclassified package file that is not requested
by the known legitimate package file.

17. The system of claim 12, wherein the feature determi-
nation module determines that the feature of the unclassified
package file is suspicious by identifying a negative reputation
of' the different signatory of the unclassified package file.

18. The system of claim 12, wherein the classification
module further performs a security action based on classify-
ing the unclassified package file as the Trojan version of the
known legitimate package file.

19. The system of claim 18, wherein the security action
comprises at least one of:

alerting a developer of the known legitimate package file to
the presence of the Trojan version of the known legiti-
mate package file;

informing a user of the Trojan version of the known legiti-
mate package file that the user is not using the known
legitimate package file;

flagging the unclassified package file as the Trojan version
of the known legitimate package file in an application
store;

removing the unclassified package file from an application
store.

20. A non-transitory computer-readable medium compris-
ing one or more computer-readable instructions that, when
executed by at least one processor of a computing device,
cause the computing device to:

detect a resemblance between an unclassified package file
and a known legitimate package file;

determine that the unclassified package file is signed by a
different signatory than a signatory that signed the
known legitimate package file;

determine that a feature of the unclassified package file is
suspicious, the feature being absent from the known
legitimate package file;

classify the unclassified package file as a Trojan version of
the known legitimate package file based on the unclas-
sified package file being signed by the different signa-
tory and having the suspicious feature.

#* #* #* #* #*

